3.7.6 \(\int \frac {(1-\cos ^2(c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [606]

3.7.6.1 Optimal result
3.7.6.2 Mathematica [A] (verified)
3.7.6.3 Rubi [A] (verified)
3.7.6.4 Maple [A] (verified)
3.7.6.5 Fricas [B] (verification not implemented)
3.7.6.6 Sympy [F]
3.7.6.7 Maxima [F(-2)]
3.7.6.8 Giac [A] (verification not implemented)
3.7.6.9 Mupad [B] (verification not implemented)

3.7.6.1 Optimal result

Integrand size = 31, antiderivative size = 94 \[ \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {2 b \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 \sqrt {a-b} \sqrt {a+b} d}+\frac {\text {arctanh}(\sin (c+d x))}{a^2 d}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))} \]

output
arctanh(sin(d*x+c))/a^2/d-sin(d*x+c)/a/d/(a+b*cos(d*x+c))-2*b*arctan((a-b) 
^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^2/d/(a-b)^(1/2)/(a+b)^(1/2)
 
3.7.6.2 Mathematica [A] (verified)

Time = 0.43 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.31 \[ \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {2 b \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\sqrt {-a^2+b^2}}-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-\frac {a \sin (c+d x)}{a+b \cos (c+d x)}}{a^2 d} \]

input
Integrate[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^2,x]
 
output
((2*b*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^ 
2] - Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + Log[Cos[(c + d*x)/2] + Sin 
[(c + d*x)/2]] - (a*Sin[c + d*x])/(a + b*Cos[c + d*x]))/(a^2*d)
 
3.7.6.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.290, Rules used = {3042, 3535, 27, 3042, 3226, 3042, 3138, 218, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1-\sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3535

\(\displaystyle \frac {\int \frac {\left (a^2-b^2\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec (c+d x)}{a+b \cos (c+d x)}dx}{a}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3226

\(\displaystyle \frac {\frac {\int \sec (c+d x)dx}{a}-\frac {b \int \frac {1}{a+b \cos (c+d x)}dx}{a}}{a}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {b \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{a}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}}{a}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\text {arctanh}(\sin (c+d x))}{a d}-\frac {2 b \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\)

input
Int[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^2,x]
 
output
((-2*b*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*Sqrt[a - b]* 
Sqrt[a + b]*d) + ArcTanh[Sin[c + d*x]]/(a*d))/a - Sin[c + d*x]/(a*d*(a + b 
*Cos[c + d*x]))
 

3.7.6.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3226
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])), x_Symbol] :> Simp[b/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), 
 x], x] - Simp[d/(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[ 
{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3535
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*S 
in[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m 
+ 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin 
[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n 
+ 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d 
*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) || 
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 
 0])))
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.7.6.4 Maple [A] (verified)

Time = 2.33 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.38

method result size
derivativedivides \(\frac {\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}+\frac {-\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}-\frac {2 b \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}}{a^{2}}}{d}\) \(130\)
default \(\frac {\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}+\frac {-\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}-\frac {2 b \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}}{a^{2}}}{d}\) \(130\)
risch \(-\frac {2 i \left (a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}{a b d \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}-\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, d \,a^{2}}+\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, d \,a^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{2} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d \,a^{2}}\) \(240\)

input
int((-cos(d*x+c)^2+1)*sec(d*x+c)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOS 
E)
 
output
1/d*(1/a^2*ln(tan(1/2*d*x+1/2*c)+1)-1/a^2*ln(tan(1/2*d*x+1/2*c)-1)+2/a^2*( 
-a*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-b*tan(1/2*d*x+1/2*c)^2+a+b)- 
b/((a-b)*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2)) 
))
 
3.7.6.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 198 vs. \(2 (85) = 170\).

Time = 0.33 (sec) , antiderivative size = 464, normalized size of antiderivative = 4.94 \[ \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\left [-\frac {{\left (b^{2} \cos \left (d x + c\right ) + a b\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b - a^{2} b^{3}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} - a^{3} b^{2}\right )} d\right )}}, -\frac {2 \, {\left (b^{2} \cos \left (d x + c\right ) + a b\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b - a^{2} b^{3}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} - a^{3} b^{2}\right )} d\right )}}\right ] \]

input
integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="fri 
cas")
 
output
[-1/2*((b^2*cos(d*x + c) + a*b)*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + 
 (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*si 
n(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) 
 - (a^3 - a*b^2 + (a^2*b - b^3)*cos(d*x + c))*log(sin(d*x + c) + 1) + (a^3 
 - a*b^2 + (a^2*b - b^3)*cos(d*x + c))*log(-sin(d*x + c) + 1) + 2*(a^3 - a 
*b^2)*sin(d*x + c))/((a^4*b - a^2*b^3)*d*cos(d*x + c) + (a^5 - a^3*b^2)*d) 
, -1/2*(2*(b^2*cos(d*x + c) + a*b)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) 
 + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (a^3 - a*b^2 + (a^2*b - b^3)*cos(d 
*x + c))*log(sin(d*x + c) + 1) + (a^3 - a*b^2 + (a^2*b - b^3)*cos(d*x + c) 
)*log(-sin(d*x + c) + 1) + 2*(a^3 - a*b^2)*sin(d*x + c))/((a^4*b - a^2*b^3 
)*d*cos(d*x + c) + (a^5 - a^3*b^2)*d)]
 
3.7.6.6 Sympy [F]

\[ \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=- \int \left (- \frac {\sec {\left (c + d x \right )}}{a^{2} + 2 a b \cos {\left (c + d x \right )} + b^{2} \cos ^{2}{\left (c + d x \right )}}\right )\, dx - \int \frac {\cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}}{a^{2} + 2 a b \cos {\left (c + d x \right )} + b^{2} \cos ^{2}{\left (c + d x \right )}}\, dx \]

input
integrate((1-cos(d*x+c)**2)*sec(d*x+c)/(a+b*cos(d*x+c))**2,x)
 
output
-Integral(-sec(c + d*x)/(a**2 + 2*a*b*cos(c + d*x) + b**2*cos(c + d*x)**2) 
, x) - Integral(cos(c + d*x)**2*sec(c + d*x)/(a**2 + 2*a*b*cos(c + d*x) + 
b**2*cos(c + d*x)**2), x)
 
3.7.6.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="max 
ima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.7.6.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.76 \[ \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {\frac {2 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )} b}{\sqrt {a^{2} - b^{2}} a^{2}} - \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} + \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} + \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )} a}}{d} \]

input
integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="gia 
c")
 
output
-(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d 
*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))*b/(sqrt(a^2 - b^2) 
*a^2) - log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 + log(abs(tan(1/2*d*x + 1/2 
*c) - 1))/a^2 + 2*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - b*tan( 
1/2*d*x + 1/2*c)^2 + a + b)*a))/d
 
3.7.6.9 Mupad [B] (verification not implemented)

Time = 2.22 (sec) , antiderivative size = 486, normalized size of antiderivative = 5.17 \[ \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{a^2\,d}+\frac {b^2\,\left (a\,\sin \left (c+d\,x\right )+2\,\cos \left (c+d\,x\right )\,\mathrm {atanh}\left (\frac {a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-2\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a\,b^2-a^3\right )}^2}\right )\,\sqrt {b^2-a^2}\right )-a^3\,\sin \left (c+d\,x\right )+2\,a\,b\,\mathrm {atanh}\left (\frac {a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-2\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a\,b^2-a^3\right )}^2}\right )\,\sqrt {b^2-a^2}}{a^2\,d\,\left (a^2-b^2\right )\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \]

input
int(-(cos(c + d*x)^2 - 1)/(cos(c + d*x)*(a + b*cos(c + d*x))^2),x)
 
output
(2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(a^2*d) + (b^2*(a*sin(c + 
 d*x) + 2*cos(c + d*x)*atanh((a^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 2 
*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 2*b^5*sin(c/2 + (d*x)/2)*(b^2 
- a^2)^(1/2) + 3*a^2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^3*b^2*si 
n(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^4*b*sin(c/2 + (d*x)/2)*(b^2 - a^2)^ 
(1/2))/(cos(c/2 + (d*x)/2)*(a*b^2 - a^3)^2))*(b^2 - a^2)^(1/2)) - a^3*sin( 
c + d*x) + 2*a*b*atanh((a^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 2*b^3*s 
in(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 2*b^5*sin(c/2 + (d*x)/2)*(b^2 - a^2) 
^(1/2) + 3*a^2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^3*b^2*sin(c/2 
+ (d*x)/2)*(b^2 - a^2)^(1/2) - a^4*b*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2)) 
/(cos(c/2 + (d*x)/2)*(a*b^2 - a^3)^2))*(b^2 - a^2)^(1/2))/(a^2*d*(a^2 - b^ 
2)*(a + b*cos(c + d*x)))